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Star formation
Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred

to as "stellar nurseries" or "star-forming regions", collapse and form stars.[1] As a branch of astronomy, star formation

includes the study of the interstellar medium (ISM) and giant molecular clouds (GMC) as precursors to the star formation

process, and the study of protostars and young stellar objects as its immediate products. It is closely related to planet

formation, another branch of astronomy. Star formation theory, as well as accounting for the formation of a single star,

must also account for the statistics of binary stars and the initial mass function.
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A spiral galaxy like the Milky Way contains stars, stellar remnants, and a

diffuse interstellar medium (ISM) of gas and dust. The interstellar medium

consists of 10−4 to 106 particles per cm3 and is typically composed of roughly

70% hydrogen by mass, with most of the remaining gas consisting of helium.

This medium has been chemically enriched by trace amounts of heavier

elements that were ejected from stars as they passed beyond the end of their

main sequence lifetime. Higher density regions of the interstellar medium

form clouds, or diffuse nebulae,[2] where star formation takes place.[3] In

contrast to spirals, an elliptical galaxy loses the cold component of its

interstellar medium within roughly a billion years, which hinders the galaxy

from forming diffuse nebulae except through mergers with other galaxies.[4]
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In the dense nebulae where stars are produced, much of the hydrogen is in the molecular (H2) form, so these nebulae are

called molecular clouds.[3] Observations indicate that the coldest clouds tend to form low-mass stars, observed first in the

infrared inside the clouds, then in visible light at their surface when the clouds dissipate, while giant molecular clouds,

which are generally warmer, produce stars of all masses.[5] These giant molecular clouds have typical densities of 100

particles per cm3, diameters of 100 light-years (9.5 × 1014 km), masses of up to 6 million solar masses (M☉),[6] and an

average interior temperature of 10 K. About half the total mass of the galactic ISM is found in molecular clouds[7] and in

the Milky Way there are an estimated 6,000 molecular clouds, each with more than 100,000 M☉.[8] The nearest nebula to

the Sun where massive stars are being formed is the Orion nebula, 1,300 ly (1.2 × 1016 km) away.[9] However, lower mass

star formation is occurring about 400–450 light years distant in the ρ Ophiuchi cloud complex.[10]

A more compact site of star formation is the opaque clouds of dense gas and dust known as Bok globules; so named after

the astronomer Bart Bok. These can form in association with collapsing molecular clouds or possibly independently.[11]

The Bok globules are typically up to a light year across and contain a few solar masses.[12] They can be observed as dark

clouds silhouetted against bright emission nebulae or background stars. Over half the known Bok globules have been

found to contain newly forming stars.[13]

An interstellar cloud of gas will remain in hydrostatic equilibrium as long as

the kinetic energy of the gas pressure is in balance with the potential energy of

the internal gravitational force. Mathematically this is expressed using the

virial theorem, which states that, to maintain equilibrium, the gravitational

potential energy must equal twice the internal thermal energy.[15] If a cloud is

massive enough that the gas pressure is insufficient to support it, the cloud

will undergo gravitational collapse. The mass above which a cloud will

undergo such collapse is called the Jeans mass. The Jeans mass depends on

the temperature and density of the cloud, but is typically thousands to tens of

thousands of solar masses.[3] This coincides with the typical mass of an open

cluster of stars, which is the end product of a collapsing cloud.[16]

In triggered star formation, one of several events might occur to compress a

molecular cloud and initiate its gravitational collapse. Molecular clouds may collide with each other, or a nearby

supernova explosion can be a trigger, sending shocked matter into the cloud at very high speeds.[3] (The resulting new

stars may themselves soon produce supernovae, producing self-propagating star formation.) Alternatively, galactic

collisions can trigger massive starbursts of star formation as the gas clouds in each galaxy are compressed and agitated by

tidal forces.[18] The latter mechanism may be responsible for the formation of globular clusters.[19]

A supermassive black hole at the core of a galaxy may serve to regulate the rate of star formation in a galactic nucleus. A

black hole that is accreting infalling matter can become active, emitting a strong wind through a collimated relativistic jet.

This can limit further star formation. Massive black holes ejecting radio-frequency-emitting particles at near-light speed

can also block the formation of new stars in aging galaxies.[20] However, the radio emissions around the jets may also

trigger star formation. Likewise, a weaker jet may trigger star formation when it collides with a cloud.[21]

As it collapses, a molecular cloud breaks into smaller and smaller pieces in a hierarchical manner, until the fragments

reach stellar mass. In each of these fragments, the collapsing gas radiates away the energy gained by the release of

gravitational potential energy. As the density increases, the fragments become opaque and are thus less efficient at

Assembly of galaxy in early
Universe.[14]
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radiating away their energy. This

raises the temperature of the

cloud and inhibits further

fragmentation. The fragments

now condense into rotating

spheres of gas that serve as stellar

embryos.[23]

Complicating this picture of a

collapsing cloud are the effects of

turbulence, macroscopic flows,

rotation, magnetic fields and the

cloud geometry. Both rotation and magnetic fields can hinder the collapse of a

cloud.[24][25] Turbulence is instrumental in causing fragmentation of the

cloud, and on the smallest scales it promotes collapse.[26]

A protostellar cloud will continue to collapse as long as the gravitational

binding energy can be eliminated. This excess energy is primarily lost through

radiation. However, the collapsing cloud will eventually become opaque to its

own radiation, and the energy must be removed through some other means.

The dust within the cloud becomes heated to temperatures of 60–100 K, and

these particles radiate at wavelengths in the far infrared where the cloud is

transparent. Thus the dust mediates the further collapse of the cloud.[27]

During the collapse, the density of the cloud increases towards the center and

thus the middle region becomes optically opaque first. This occurs when the

density is about 10−13 g / cm3. A core region, called the First Hydrostatic Core,

forms where the collapse is essentially halted. It continues to increase in

temperature as determined by the virial theorem. The gas falling toward this

opaque region collides with it and creates shock waves that further heat the

core.[28]

When the core temperature reaches about 2000 K, the thermal energy

dissociates the H2 molecules.[28] This is followed by the ionization of the hydrogen and helium atoms. These processes

absorb the energy of the contraction, allowing it to continue on timescales comparable to the period of collapse at free fall

velocities.[29] After the density of infalling material has reached about 10−8 g / cm3, that material is sufficiently

transparent to allow energy radiated by the protostar to escape. The combination of convection within the protostar and

radiation from its exterior allow the star to contract further.[28] This continues until the gas is hot enough for the internal

pressure to support the protostar against further gravitational collapse—a state called hydrostatic equilibrium. When this

accretion phase is nearly complete, the resulting object is known as a protostar.[3]

Accretion of material onto the protostar continues partially from the newly formed circumstellar disc. When the density

and temperature are high enough, deuterium fusion begins, and the outward pressure of the resultant radiation slows (but

does not stop) the collapse. Material comprising the cloud continues to "rain" onto the protostar. In this stage bipolar jets

ALMA observations of the Orion
Nebula complex provide insights
into explosions at star birth.[17]

Dwarf galaxy ESO 553-46 has one
of the highest rates of star formation
of the 1000 or so galaxies nearest to
the Milky Way.[22]

Protostar

LH 95 stellar nursery in Large
Magellanic Cloud.
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are produced called Herbig-Haro

objects. This is probably the

means by which excess angular

momentum of the infalling

material is expelled, allowing the

star to continue to form.

When the surrounding gas and

dust envelope disperses and

accretion process stops, the star

is considered a pre–main

sequence star (PMS star). The

energy source of these objects is

gravitational contraction, as

opposed to hydrogen burning in

main sequence stars. The PMS

star follows a Hayashi track on

the Hertzsprung–Russell (H–R) diagram.[31] The contraction will proceed

until the Hayashi limit is reached, and thereafter contraction will continue on

a Kelvin–Helmholtz timescale with the temperature remaining stable. Stars

with less than 0.5 M☉ thereafter join the main sequence. For more massive

PMS stars, at the end of the Hayashi track they will slowly collapse in near

hydrostatic equilibrium, following the Henyey track.[32]

Finally, hydrogen begins to fuse in the core of the star, and the rest of the enveloping material is cleared away. This ends

the protostellar phase and begins the star's main sequence phase on the H–R diagram.

The stages of the process are well defined in stars with masses around 1 M☉ or less. In high mass stars, the length of the

star formation process is comparable to the other timescales of their evolution, much shorter, and the process is not so

well defined. The later evolution of stars are studied in stellar evolution.

Composite image showing young
stars in and around molecular cloud
Cepheus B.

N11, part of a complex network of
gas clouds and star clusters within
our neighbouring galaxy, the Large
Magellanic Cloud.

Star formation region Lupus 3.[30]
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Protostar

Protostar outburst - HOPS 383 (2015).

Key elements of star formation are only available by observing in wavelengths

other than the optical. The protostellar stage of stellar existence is almost

invariably hidden away deep inside dense clouds of gas and dust left over

from the GMC. Often, these star-forming cocoons known as Bok globules, can

be seen in silhouette against bright emission from surrounding gas.[33] Early

stages of a star's life can be seen in infrared light, which penetrates the dust

more easily than visible light.[34] Observations from the Wide-field Infrared

Survey Explorer (WISE) have thus been especially important for unveiling

numerous Galactic protostars and their parent star clusters.[35][36] Examples

of such embedded star clusters are FSR 1184, FSR 1190, Camargo 14, Camargo

74, Majaess 64, and Majaess 98.[37]

The structure of the molecular

cloud and the effects of the

protostar can be observed in

near-IR extinction maps (where

the number of stars are counted

per unit area and compared to a

nearby zero extinction area of

sky), continuum dust emission and rotational transitions of CO and other

molecules; these last two are observed in the millimeter and submillimeter

range. The radiation from the protostar and early star has to be observed in

infrared astronomy wavelengths, as the extinction caused by the rest of the

Observations

The Orion Nebula is an archetypical
example of star formation, from the
massive, young stars that are
shaping the nebula to the pillars of
dense gas that may be the homes of
budding stars.

Star-forming region S106.
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cloud in which the star is forming is usually too big to allow us to observe it in the visual part of the spectrum. This

presents considerable difficulties as the Earth's atmosphere is almost entirely opaque from 20μm to 850μm, with narrow

windows at 200μm and 450μm. Even outside this range, atmospheric subtraction techniques must be used.

X-ray observations have proven useful for studying young stars, since X-ray

emission from these objects is about 100–100,000 times stronger than X-ray

emission from main-sequence stars.[39] The earliest detections of X-rays from

T Tauri stars were made by the Einstein X-ray Observatory.[40][41] For low-

mass stars X-rays are generated by the heating of the stellar corona through

magnetic reconnection, while for high-mass O and early B-type stars X-rays

are generated through supersonic shocks in the stellar winds. Photons in the

soft X-ray energy range covered by the Chandra X-ray Observatory and XMM

Newton may penetrate the interstellar medium with only moderate

absorption due to gas, making the X-ray a useful wavelength for seeing the

stellar populations within molecular clouds. X-ray emission as evidence of

stellar youth makes this band particularly useful for performing censuses of

stars in star-forming regions, given that not all young stars have infrared

excesses.[42] X-ray observations have provided near-complete censuses of all

stellar-mass objects in the Orion Nebula Cluster and Taurus Molecular

Cloud.[43][44]

The formation of individual stars can only be directly observed in the Milky Way Galaxy, but in distant galaxies star

formation has been detected through its unique spectral signature.

Initial research indicates star-forming clumps start as giant, dense areas in turbulent gas-rich matter in young galaxies,

live about 500 million years, and may migrate to the center of a galaxy, creating the central bulge of a galaxy.[45]

On February 21, 2014, NASA announced a greatly upgraded database (http://www.astrochem.org/pahdb/) for tracking

polycyclic aromatic hydrocarbons (PAHs) in the universe. According to scientists, more than 20% of the carbon in the

universe may be associated with PAHs, possible starting materials for the formation of life. PAHs seem to have been

formed shortly after the Big Bang, are widespread throughout the universe, and are associated with new stars and

exoplanets.[46]

In February 2018, astronomers reported, for the first time, a signal of the reionization epoch, an indirect detection of light

from the earliest stars formed - about 180 million years after the Big Bang.[47]

MWC 349 was first discovered in 1978, and is estimated to be only 1,000 years old.
VLA 1623 – The first exemplar Class 0 protostar, a type of embedded protostar that has yet to accrete the majority of
its mass. Found in 1993, is possibly younger than 10,000 years.[48]

L1014 – An extremely faint embedded object representative of a new class of sources that are only now being
detected with the newest telescopes. Their status is still undetermined, they could be the youngest low-mass Class 0
protostars yet seen or even very low-mass evolved objects (like a brown dwarf or even an interstellar planet).[49]

IRS 8* – The youngest known main sequence star in the Galactic Center region, discovered in August 2006. It is
estimated to be 3.5 million years old.[50]

Young stars (purple) revealed by X-
ray inside the NGC 2024 star-
forming region.[38]
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Stars of different masses are thought to form by slightly different

mechanisms. The theory of low-mass star formation, which is well-supported

by a plethora of observations, suggests that low-mass stars form by the

gravitational collapse of rotating density enhancements within molecular

clouds. As described above, the collapse of a rotating cloud of gas and dust

leads to the formation of an accretion disk through which matter is channeled

onto a central protostar. For stars with masses higher than about 8 M☉,

however, the mechanism of star formation is not well understood.

Massive stars emit copious quantities of radiation which pushes against

infalling material. In the past, it was thought that this radiation pressure

might be substantial enough to halt accretion onto the massive protostar and

prevent the formation of stars with masses more than a few tens of solar

masses.[53] Recent theoretical work has shown that the production of a jet and

outflow clears a cavity through which much of the radiation from a massive

protostar can escape without hindering accretion through the disk and onto

the protostar.[54][55] Present thinking is that massive stars may therefore be

able to form by a mechanism similar to that by which low mass stars form.

There is mounting evidence that at least some massive protostars are indeed surrounded by accretion disks. Several other

theories of massive star formation remain to be tested observationally. Of these, perhaps the most prominent is the theory

of competitive accretion, which suggests that massive protostars are "seeded" by low-mass protostars which compete with

other protostars to draw in matter from the entire parent molecular cloud, instead of simply from a small local

region.[56][57]

Another theory of massive star formation suggests that massive stars may form by the coalescence of two or more stars of

lower mass.[58]

Accretion
Champagne flow model
Chronology of the universe
Formation and evolution of the Solar System
Galaxy formation and evolution
List of star-forming regions in the Local Group
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Low mass and high mass star formation

Star-forming region Westerhout 40
and the Serpens-Aquila Rift- cloud
filaments containing new stars fill
the region.[51][52]
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